

CGFX7

The NitrOS-9 C Programming Graphics Libary

From nitros9

Contents

� 1 Introduction

� 2 Buffering

� 3 SetAlarm, GetAlarm, ClrAlarm, SigAlarm

� 4 BUp, BDown, RBUp, RBDown

� 5 BColor, Border, DefColr, FColor, LSet, Palette, PSet, ScaleSw, SetGC

� 6 cread, creadln, cwrite, cwriteln

� 7 Dialog

� 8 SetDPtr, RSetDPtr, Point, RPoint, Line, RLine, LineM, RLineM, Box, RBox,

Bar, RBar, FFill, Circle, Ellipse, Arc, PutGC

� 9 Draw

� 10 getenv, putenv

� 11 FName, MVFName

� 12 _Flush

� 13 BoldSw, Font, PropSw, TCharSw

� 14 DfnGPBuf, GPLoad, GetBlk, KilBuf, PutBlk, _ss_mgpb

� 15 getstr

� 16 _ss_ksns, _gs_ksns

� 17 Menu, MenuXY, MVMenu, MVMenuXY

� 18 _ss_mous, _gs_mous

� 19 MouseKey

� 20 MouseXY

� 21 movemem

� 22 _ss_wset, _gs_msel, _ss_umba, _ss_sbar

� 23 AddObj, MoveObj, DelObj

� 24 Play

� 25 PolyFill, PolyLine, PolyRot, PolyScal, PolyTran

� 26 SetType

� 27 Shadow

� 28 _gs_scsz, _gs_palt, _gs_styp, _gs_fbrg, _ss_gip, _ss_dfpl, _ss_mtyp

� 29 _ss_tone

� 30 TandyMN

� 31 Bell, BlinkOff, BlinkOn, Clear, CrRtn, CurDwn, CurLft, ...

� 32 CWArea, DWEnd, DWProtSw, DWSet, MVOEnd, OWEnd, OWSet, Select,

UnShadow

Introduction

This is the seventh edition of my CGFX library replacement, with source and some real

documentation. Version 7 adds a few new functions, which are described in detail on the

following pages. Version 7 also fixes some bugs in the buffering added in version 5.

This library and its source are public domain. This means that you may use and distribute

this library as much as you like, but you may not charge for it (other than cost of a disk or

whatever). You may freely use this library for your own developments, commercial or

otherwise. Feel free to change the source as needed for your own products, but please do

not release changed version-tell me instead and I will add/change the lib as necessary. I

make no warranties, express or implied, as to the reliability and/or usability of this

library.

If you come across any bugs/omissions/spelling errors in the library, or if you have any

suggestions for improvement, send mail to any of the following addresses:

Michael Sweet

209 Kennedy Plaza

Utica, NY 13502

sweetmr@sct60a.sunyct.edu (internet/bitnet)

DODGECOLT (Delphi)

Buffering

As previously stated, this version of the library has optional buffering for the output of

certain functions. To include the buffering code, simply use the function _Flush(). This

will inform the linker that buffered output is desired. The buffer used is 256 bytes long,

and is flushed when one of the following occurs:

� The buffer is filled or you try to write more than 256 bytes at a time.

� You call the _Flush() function to flush the buffer. This is not the same as the

flush() or flushall() functions used with FILE type I/O.

� You call one of the following functions:

� writeln(), cwriteln()
� read(), cread(), readln(), creadln()
� KilBuf(), GPLoad()
� _ss_mgpb(), _ss_wset(), _gs_styp()
� DWSet(), DWEnd(), DWSelect()
� OWSet(), OWEnd(), CWArea()
� Play()

� You do I/O with a different path.

The increase in speed for some things can be phenomenal. The table below shows a few

benchmarks for comparison. The 'dots' program fills the screen by setting each pixel

individually. The 'hline' program does the same, but uses horizontal lines instead. The

'vline' program uses vertical lines. 'Text' writes 10,000 characters to a hardware text

window one at a time.

Execution Time (mins)

Program Unbuffered Buffered

dots 9:05 4:54

hlines 0:03 0:03

vlines 0:04 0:04

text 0:37 0:13

Note that for the tests using lines, no measurable difference was detected. This is

primarily due to the relatively few calls needed. Larger numbers of lines would probably

reveal a slight speed increase with buffered output. All tests were performed using the

Fast GRFDrv patch.

Many thanks to Eddie Kuns who got me thinking about adding buffered output to the lib

and to Bob van der Poel for pointing out an omission I made with the _Flush function.

SetAlarm, GetAlarm, ClrAlarm, SigAlarm

Usage

#include <time.h>

int SetAlarm(timbuf)

struct sgtbuf *timbuf;

int GetAlarm(timbuf)

struct sgtbuf *timbuf;

int ClrAlarm()

int SigAlarm(timbuf,signo)

struct sgtbuf *timbuf;

int signo;

Description

SetAlarm() sets the system alarm to the time in timbuf. When the current time equals the

alarm time, an alarm is sounded for sixteen seconds.

GetAlarm() gets the system alarm time and places it in the time buffer pointed to by

timbuf. If the alarm has not been set, the time returned will be 00/00/00 00:00.

ClrAlarm() will clear the system alarm.

SigAlarm() will set the system alarm to the time in timbuf. When the current time equals

the alarm time, a signal (signo) is sent to the calling process.

Only one alarm can be active at a time.

BUp, BDown, RBUp, RBDown

Usage

BUp(path, column, row, s, fg, bg)

int path, column, row, fg, bg;

char *s;

BDown(path, column, row, s)

int path, column, row;

char *s;

RBUp(path, column, row, fg, bg)

int path, olumn, row, fg, bg;

RBDown(path, column, row, fg, bg)

int path, column, row, fg, bg;

Description

BUp() and BDown() are two functions that handle the placement of three-dimensional

rectangular buttons on the screen. The BUp() function is used to initially place the button

on the window. S is a pointer to the characters that will appear inside the button. If these

characters are not in the current window font, then the font must be set before calling this

function, as it does not distinguish between control characters and data. The button is

created with a foreground color or fg and a background color or bg. A one character

border (one line above and below, one character to the left and right) must be accounted

for, as the button edges reach into these areas. Therefore, each button requires 3 window

rows and 2+length of s columns.

The BDown() function is called after a BUp() to push the button down. This function

uses buffer 255 of the current process's G/P buffers to push the button down, and kills it

once the operation is completed. Note that this function uses the button that was drawn

using BUp(). You must call BUp() prior to calling BDown(). The button can be released

by calling BUp() again, which redraws the original button.

RBUp() and RBDown are functions which place three dimensional radio buttons on the

window specified by path. Unlike BUp() and BDown(), you do not need to call RBUp()

prior to calling RBDown(). The button is drawn at column column and row row with a

foreground color of fg and a background color of bg.

For these functions to work properly, you must have window scaling turned off.

Otherwise, the lines that are drawn will not be placed properly (resulting in a garbled

display).

BColor, Border, DefColr, FColor, LSet, Palette, PSet, ScaleSw, SetGC

Usage:

#include <buffs.h>

int BColor(path,prn)

int path,prn;

int Border(path,prn)

int path,prn;

int DefColr(path)

int path;

int FColor(path,prn)

int path,prn;

int LSet(path,grpnum,bufnum)

int path,grpnum,bufnum;

int Palette(path,prn,colno)

int path,prn,colno;

int PSet(path,grpnum,bufnum)

int path,grpnum,bufnum;

int ScaleSw(path,bsw)

int path,bsw;

int SetGC(path,grpnum,bufnum)

int path,grpnum,bufnum;

Description:

BColor() will set the background color on path to prn. Border() will set the border color

on path to prn. DefColr() restores the default palette settings on path. FColor() will set

the foreground color on path to prn.

LSet() sets the point logic for path. Logiccode can be one of the following (defined in

<buffs.h>):

/* logic modes */

#define LOG_NONE 0 /* no logic - just put it there (default) */

#define LOG_AND 1 /* AND the contents of the screen with the data */

#define LOG_OR 2 /* OR the contents of the screen with the data */

#define LOG_XOR 3 /* XOR the contents of the screen with the data */

PSet() will set the drawing pattern to be used on path. A number of standard patterns are

included with OS-9. The <buffs.h> header file defines them as follows:

/* buffer group numbers */

#define GRP_PAT2 203 /* Two color patterns */

#define GRP_PAT4 204 /* Four color patterns */

#define GRP_PAT6 205 /* Sixteen color patterns */

/* pattern buffers */

#define PAT_SLD 0 /* Solid (default) */

#define PAT_DOT 1 /* Dots */

#define PAT_VRT 2 /* Vertical lines */

#define PAT_HRZ 3 /* Horizontal lines */

#define PAT_XHTC 4 /* Crosshatch */

#define PAT_LSNT 5 /* Left slanted lines */

#define PAT_RSNT 6 /* Right slanted lines */

#define PAT_SDOT 7 /* Small dots */

#define PAT_BDOT 8 /* BIG dots */

Palette() will set palette register prn to colno on path. Prn is any legal register number

from 0-15. Colno is the palette value, derived from the following:

Bit

5 4 3 2 1 0

RED GREEN BLUE red green blue

The operating system automatically converts palette settings when using a composite

monitor.

ScaleSw() will turn graphics scaling on or off. If bsw is 0, then scaling is turned off.

Otherwise, scaling is turned on. Graphics are scaled from 640x192 to the size of the

window.

SetGC() will set the current mouse pointer on path to grpnum,bufnum. The standard

pointer buffers are defined in <buffs.h>:

#define GRP_PTR 202 /* Pointer group */

/* mouse pointer buffers */

#define PTR_ARR 1 /* Arrow */

#define PTR_PEN 2 /* Pencil */

#define PTR_LCH 3 /* Large Cross Hairs */

#define PTR_SLP 4 /* Hourglass (sleep) */

#define PTR_ILL 5 /* Illegal (circle with a slash) */

#define PTR_TXT 6 /* Text */

#define PTR_SCH 7 /* Small Cross Hairs */

On error, these functions return -1, with the error number in errno.

cread, creadln, cwrite, cwriteln

Usage:

int cread(path,s,n)

int path,n;

char *s;

int creadln(path,s,n)

int path,n;

char *s;

int cwrite(path,s,n)

int path,n;

char *s;

int cwriteln(path,s,n)

int path,n;

char *s;

Description:

These functions are variations of the standard read(), readln(), write(), and writeln()

functions for use with C NULL-terminated strings. The cread() and creadln() functions

use the I$ReadLn call to get a string of characters. The cread() function will replace the

terminating carriage return with a NULL, while the creadln() function will append a

NULL to the end of the string.

The cwrite() and cwriteln() functions will write a maximum of n characters to the

specified path using the respective system call- I$Write for cwrite() and I$WriteLn for

cwriteln().

Dialog

Usage:

#include <dialog.h>

int Dialog(path,dlgptr,column,row,width,length,fg,bg)

int path,column,row,width,length,fg,bg;

DIALOG *dlgptr;

Description:

Dialog() is a high-level dialog management function. It creates an overlay on path at

column,row with a foreground and background color of fg and bg respectively. Dlgptr is

a pointer to an array of DIALOG descriptions. The DIALOG type is defined in

<dialog.h> as:

typedef struct { /* dialog structure */

char d_type; /* type- 0=string, 1=button */

char d_column; /* column position

within the overlay */

char d_row; /* row within the overlay */

char d_key; /* key assocated with this

button (0 for none) */

char d_val; /* value to return to caller */

char *d_string; /* pointer to actual string to

be placed in overlay *

} DIALOG; /* call this type DIALOG */

The <dialog.h> file also provides some constants for the d_type field in the DIALOG

structure:

#define D_TEXT 0 /* ASCII text */

#define D_KEY 1 /* key-binding */

#define D_STRING 2 /* ASCII string box (accepts text) */

#define D_BUTTON 3 /* 3-D text button */

#define D_RADIO 4 /* Radio button */

#define D_END -1 /* End marker of array */

The actions which the Dialog() functions takes depends greatly on the type of the object

that is being acted on.

D_TEXT

The D_TEXT type of object is a simple NULL-terminated string. It is placed in the

overlay at d_column,d_row. This type of object basically lets you place text in the

overlay that you don't want to change (i.e. have the user change.) The d_key and d_val

fields should be set to 0 for this type.

D_KEY

The D_KEY type of object binds a key to a value to be returned by the Dialog() function.

Whenever the user presses that key (and is not editing a string-see below) the Dialog()

function will return d_val. D_string, d_column, and d_row should all be set to 0.

D_STRING

The D_STRING type of object is a string-requester box. The size of the box is

determined by the length of the string pointed to by d_string. Whenever the user selects

the string box, he is put into an editing mode where each keypress is placed in the string,

minus control chars which are used for editing. All editing features of Kevin Darling's

SCF patch are available. When the user presses ENTER, one of two things will happen. If

the d_val field is non-zero, the Dialog() function will return that value to the calling

function. If not, the string box is unselected and the user can continue to use the dialog

box. It is highly recommended that you dynamically allocate memory for each string that

you use. One 'feature' of the Microware C compiler is that it will not copy constant

strings to your process's data space. Instead, it uses the copy(s) in the program module

directly. This can lead to some problems when you run the same program in different

windows. See the example below for the easy way around this.

D_BUTTON

The D_BUTTON type of object is a three dimension rectangular button with text on the

top of the button. Whenever the user presses the key associated with this object or clicks

on it, d_val is returned.

D_RADIO

The D_RADIO type of object is a simple radio button. If the user presses the key

associated with the object or clicks on it, then the button is toggled. The current state of

the button is held in the d_val field. The d_string field holds a list of opposing radio

buttons. That is, when you click on a particular button, any other associated buttons are

pulled up (only if necessary.) The list MUST be a character array which contains the

array indexes of the opposing buttons. The indexes start at 1, as the NULL terminator is

used to end the list. The button being defined should not be included in the list (in other

words, only the button numbers which this button opposes.) If the d_string field is

NULL, then Dialog() assumes there are no opposing buttons.

D_END

The D_END type of object signals the end of the array of objects in the dialog box (pun

intended!) This must be the last element in the array you send to the Dialog() function.

Example:

 #include <dialog.h>

 #include <buffs.h>

 DIALOG temp[]={{D_TEXT,0,0,0,0,"Abort, Retry, Fail?"},

 {D_BUTTON,3,2,'A','A',"ABORT"},

 {D_BUTTON,10,2,'R','R',"RETRY"},

 {D_BUTTON,17,2,'F','F',"FAIL"},

 {D_STRING,1,4,0,0,0}, /* set up string

 later */

 {D_RADIO,26,4,'B',0,0},

 {D_TEXT,23,4,0,0,"On"},

 {D_END,0,0,0,0,0}};

 main()

 {

 char ch,s[21];

 strcpy(s," "); /* put blanks in

 the string */

 temp[4].d_string=s; /* point to string */

 SetType(1,5,0,1); /* set screen type to 5 */

 _ss_mous(1,3,10,1); /* turn mouse on */

 SetGC(1,GRP_PTR,PTR_ARR); /* ditto for pointer */

 /* now, call the dialog function... */

 ch=Dialog(1,temp,20,10,30,8,0,1);

 if (ch=='A') /* print return code */

 puts("Abort!");

 else if (ch=='R')

 puts("Retry!");

 else

 puts("Fail!");

 _ss_mous(1,0,0,0); /* turn mouse off */

 SetGC(1,0,0); /* and pointer */

 _Flush(); /* flush the buffer */

 }

SetDPtr, RSetDPtr, Point, RPoint, Line, RLine, LineM, RLineM, Box,
RBox, Bar, RBar, FFill, Circle, Ellipse, Arc, PutGC

Usage:

int SetDPtr(path,x,y)

int path,x,y;

int RSetDPtr(path,xo,yo)

int path,xo,yo;

int Point(path,x,y)

int path,x,y;

int RPoint(path,xo,yo)

int path,xo,yo;

int Line(path,x,y)

int path,x,y;

int RLine(path,xo,yo)

int path,xo,yo;

int LineM(path,x,y)

int path,x,y;

int RLineM(path,xo,yo)

int path,xo,yo;

int Box(path,x,y)

int path,x,y;

int RBox(path,xo,yo)

int path,xo,yo;

int Bar(path,x,y)

int path,x,y;

int RBar(path,xo,yo)

int path,xo,yo;

int FFill(path)

int path;

int Circle(path,radius)

int path,radius;

int Ellipse(path,xrad,yrad)

int path,xrad,yrad;

int Arc(path,xrad,yrad,xo1,yo1,xo2,yo2)

int path,xrad,yrad,xo1,yo1,xo2,yo2;

int PutGC(path,x,y)

int path,x,y;

Description:

These functions will perform various graphics primitives on path. Except for PutGC(),

the output is affected by the current logic mode and pattern buffer. The functions perform

the following operations:

SetDPtr() moves the current draw pointer to (x,y).

RSetDPtr() moves the current draw pointer to (xo,yo) relative to the current position.

Point() sets the point at (x,y) to the current foreground color.

RPoint()
sets the point (xo,yo) relative to the current position to the current

foreground color.

Line()
draws a line in the current foreground color from the current position to

(x,y).

RLine()
draws a line in the current foreground color from the current position to the

point (xo,yo) relative to the current position.

LineM() draws a line as Line(), but then moves the current position to (x,y).

RLineM()
draws a line as RLine(), but then moves the current position relative to

(xo,yo).

Box()
draws a rectangular line frame in the current foreground color from the

current position to (x,y)

RBox()

draws a rectangular line frame in the current foreground color from the

current position to a point (xo,yo) relative to the current

position.

Bar()
draws a filled rectangle in the current foreground color from the current

position to (x,y)

RBar()
draws a filled rectangle in the current foreground color from the current

position to the point (xo,yo) relative to the current position.

FFill()
fills a closed region in the current foreground color starting at the current

position.

Circle()
draws a circle in the current foreground color with its center at the current

position.

Ellipse()
draws an ellipse in the current foreground color with its center at the current

position.

Arc()
draws an arc in the current foreground color with its center at the current

position. The size and direction of the arc is controlled by xrad, yrad, and

the line relative to the current position (xo1,yo1)-(xo2,yo2.)

PutGC()
Places the mouse pointer at (x,y). This function is not compatible with the

auto-follow mouse.

On error, these functions return -1 with the error number in errno.

Bugs:

The Circle(), Ellipse(), and Arc() radii are not scaled when draw scaling is enabled.

Presumably, this bug will be fixed in a future release of the operating system.

Draw

Usage:

Draw(path,draw_string {,variable args})

int path;

char *draw_string;

Description:

Draw() imitates the DRAW function from Extended Color BASIC. Draw_string

contains a list of commands to be executed by Draw(). It can consist of:

= U{n} Move UP n units.

D{n} Move DOWN n units.

L{n} Move LEFT n units.

R{n} Move RIGHT n units.

E{n} Move at a 45 degree angle n units.

F{n} Move at a 135 degree angle n units.

G{n} Move at a 225 degree angle n units.

H{n} Move at a 315 degree angle n units.

C{n} Sets the foreground color to n.

A{n}

Sets the draw angle to n, where n is:

0 - 0 degrees

1 - 90 degrees

2 - 180 degrees

3 - 360 degrees

Mx,y
Moves to (x,y). If x or y is preceded by a sign, the move is

relative to the current position.

S{n}
Sets the current scale to n. The scale is figured by n divided by

4 (i.e. 1/4, 2/4, etc.)

B
This prefix disables drawing for the next command (blanks

output)

N This prefix forces the draw pointer to remain at its current

position after drawing. Normally, the draw pointer moves after

each command.

The draw string can optionally contain sub-strings (indicated by %s) and integers

(indicated by %d.) No clipping is done for output lines.

Bugs:

When buffering output, lines which fall outside the window will cause further writes to

be ignored until the buffer is flushed.

getenv, putenv

Usage:

char *getenv(var)

char *var;

putenv(var,s)

char *var,*s;

extern char *_ENVFILE;

Description:

Getenv() will locate the variable var in /dd/sys/env.file and return the string following

the equals (=) sign. If the string does not exist in the file, then a NULL pointer is

returned.

Putenv() will set the environment variable var to s. If var does not exist, then it is

appended to the file.

These functions will read the environment file into a buffer pointed to by _ENVFILE.

This buffer is malloc'd to 1024 bytes. Future calls to getenv or putenv will reference this

buffer unless it is freed and the pointer set to NULL.

FName, MVFName

Usage:

char *FName(path,title,fg,bg)

int path,fg,bg;

char *title;

char *MVFName(path,title,column,row,fg,bg)

int path,fg,bg;

char *title;

Description:

These functions provide an on-screen file-picking facility which allows a user to choose

any file from any disk on the system. Path is the path number to use (usually 1, but it can

be any window path that has read-write access.) Fg and bg are the foreground and

background colors of the overlay that is created by these functions. Title is the NULL-

terminated character string that is displayed at the top of the overlay. Column and row

are the column and row where the overlay will appear. In the case of FName(), the

overlay is centered on the current window. MVFName() is the Multi-Vue version of the

FName() function. Centering was omitted for this function due to the way overlay

coordinates are used by GrfDrv. MVFName() requires 22 columns and 11 rows for its

overlay, while FName() and FNameXY() require 32 columns and 12 rows. Mouse

sampling must be enabled with the _ss_mous() function prior to calling MVFName().

The filename returned is stored in a static data area. Future calls to these functions will

destroy the previous name.

Example:

#include <buffs.h>

char *p;

main()

{

 _ss_mous(1,3,10,1); /* turn sampling on */

 SetGC(1,GRP_PTR,PTR_ARR); /* and mouse pointer */

 do

 {

 p=MVFName(1,"Filename?",20,10,0,2); /* get a filename */

 if (p!=NULL) /* if there was a valid name read */

 puts(p); /* print the name */

 }

 while (p!=NULL); /* continue until user clicks on close box */

 _ss_mous(1,0,0,0); /* mouse sampling off */

 SetGC(1,0,0); /* ditto for mousue pointer */

}

_Flush

Usage:

int _Flush()

Description:

_Flush() will flush the internal write buffer. It also informs the linker to include buffering

code. If an error occurs during a _Flush() write, -1 is returned and the error number is

placed in errno. 0 is returned on success.

BoldSw, Font, PropSw, TCharSw

Usage:

#include <buffs.h>

int BoldSw(path,bsw)

int path,bsw;

int Font(path,grpnum,bufnum)

int path,grpnum,bufnum;

int PropSw(path,bsw)

int path,bsw;

int TCharSw(path,bsw)

int path,bsw;

Description:

BoldSw() will turn boldfacing of text on or off. If bsw is 0, then boldfacing is turned off.

Otherwise, boldfacing is turned on.

Font() will set the current font on path to grpnum, bufnum. The standard fonts are

defined in <buffs.h> as:

#define GRP_FONT 200 /* Font group */

/* font buffers */

#define FNT_S8X8 1 /* Standard 8x8 font (default) */

#define FNT_S6X8 2 /* Standard 6x8 font */

#define FNT_G8X8 3 /* Standard graphics character font */

/* special characters for font FNT_G8X8 */

#define CHR_RGT 0xc1 /* right arrow */

#define CHR_LFT 0xc2 /* left arrow */

#define CHR_DN 0xc3 /* down arrow */

#define CHR_UP 0xc4 /* up arrow */

#define CHR_TRI 0xc5 /* triple bar (for title bar) */

#define CHR_RSZ 0xc6 /* resize box (not used) */

#define CHR_CLZ 0xc7 /* close box */

#define CHR_MOV 0xc8 /* move box */

#define CHR_VBX 0xc9 /* vertical box (for scroll markers) */

#define CHR_HBX 0xca /* horizontal box (for scroll markers) */

#define CHR_HRG 0xcb /* hourglass (Tandy menu) */

#define CHR_TRR 0xcc /* triple bar with open right side */

#define CHR_TRL 0xcd /* triple bar with open left side */

PropSw() will turn proportional spacing on or off, depending on the value of bsw.

TCharSw() will turn transparent characters on or off, depending on the value of bsw.

None of these functions has an effect on hardware text windows. -1 is returned on error,

with the error number in errno.

DfnGPBuf, GPLoad, GetBlk, KilBuf, PutBlk, _ss_mgpb

Usage:

int DfnGPBuf(path,grpnum,bufnum,length)

int path,grpnum,bufnum,length;

int GPLoad(path,grpnum,bufnum,sty,sizex,sizey,length)

int path,grpnum,bufnum,sty,sizex,sizey,length;

int GetBlk(path,grpnum,bufnum,x,y,sizex,sizey)

int path,grpnum,bufnum,x,y,sizex,sizey;

int KilBuf(path,grpnum,bufnum)

int path,grpnum,bufnum;

int PutBlk(path,grpnum,bufnum,x,y)

int path,grpnum,bufnum,x,y;

char *_ss_mgpb(path,grpnum,bufnum,mapflag,size)

int path,grpnum,bufnum,mapflag,*size;

Description:

DfnGPBuf() will create a get/put buffer of size length. Path must be a path to a window

device. Grpnum and bufnum are the group and buffer to define. If the buffer already

exists or not enough memory is free to grant the request, -1 is returned and the error

number is placed in errno. Otherwise, 0 is returned.

GetBlk() will copy a portion of the window specified by x, y, sizex, and sizey. Path must

be a path to a window device. Grpnum and bufnum are the group and buffer that will be

copied to. On error, -1 is returned and the error number is placed in errno.

GPLoad() will generate the necessary loading header to preload a get/put buffer. Path

does not have to point to a window device, although no load is done unless it is a window

device. Sty is the window type of the data (basically for color information.) A write

should directly follow this call to insure the buffer is not loaded with garbage. On error, -

1 is return and the error number is placed in errno.

PutBlk() places a copy of a previously loaded get/put buffer at x,y. The logic used to

place the buffer on the window is controlled by the current window pset logic (see

Configuration Functions.) On error, -1 is returned and the error number is placed in

errno.

KilBuf() will remove a get/put buffer from the system. Care should be taken when using

this call as no 'link' count is maintained by the system. Deletion of standard get/put

buffers is discouraged, and can cause major problems forcing a reboot. If buffer is 0, then

all buffers in group grpnum are removed.

_ss_mgpb() will map a specified get/put buffer into/out of the calling process's address

space. The direction of mapping is controlled by the mapflag variable. If it is 0, then the

buffer is mapped out; otherwise the buffer is mapped in. On error, NULL (0) is returned

and the error number is placed in errno.

Bugs:

There are several known WindInt bugs which affect the operation of these functions:

� Mapping of buffers larger than 8k is unpredictable.

� Mapping of multiple buffers smaller than 8k will confuse WindInt. The address

returned seldom is correct.

� If you attempt to kill a non-existent buffer, WindInt will trash the buffer list

forcing you to reboot. Killing all buffers with bufnum equal to 0 does work

correctly, however.

� As stated above, things like killing font buffers while other processes are using

them do nasty things forcing a reboot.

� GetBlk() can only get 639 dots across.

getstr

Usage:

int getstr(path,prompt,s,n,column,row,fg,bg)

int path,n,column,row,fg,bg;

char *prompt,*s;

Description:

Getstr will create an overlay window at column and row, and read a string from path.

The carriage return is retained at the end of the string (s). Getstr will only read up to n

characters. Care should be taken to insure that s is at least (n + 1) characters long.

_ss_ksns, _gs_ksns

Usage:

#include <keysense.h>

int _ss_ksns(path,keybits)

int path,keybits;

int _gs_ksns(path)

int path;

Description:

These functions provide a C interface to the Color Computer OS-9 get/setstat calls to get

and set the keyboard status. The _ss_ksns() function sets key sensing for the keys

specified by keybits. Values for keybits are combined from the definitions in the

<keysense.h> header file:

#define SHIFTBIT 1

#define CTRLBIT 2

#define ALTBIT 4

#define UPBIT 8

#define DOWNBIT 16

#define LEFTBIT 32

#define RIGHTBIT 64

#define SPACEBIT 128

When the appropriate bit is set, sensing is enabled for the respective key. Any keycode

that may have been generated by the key is no longer generated. The status of sensed

keys can be obtained using the _gs_ksns() function. The return value from this function

will show the status of any key that is currently being sensed. A set bit indicates the

respective key is down.

Both functions return -1 on error. In the event of an error, the error number will be stored

in the global variable errno.

Menu, MenuXY, MVMenu, MVMenuXY

Usage:

#include <menu.h>

int Menu(path,title,itemptr,fg,bg)

int path,fg,bg;

char *title;

ITEM *itemptr;

int MenuXY(path,title,itemptr,column,row,fg,bg)

int path,column,row,fg,bg;

char *title;

ITEM *itemptr;

int MVMenu(path,title,itemptr,fg,bg)

int path,fg,bg;

char *title;

ITEM *itemptr;

int MVMenuXY(path,title,itemptr,column,row,fg,bg)

int path,column,row,fg,bg;

char *title;

ITEM *itemptr;

Description:

These functions will create an overlay window on path and get a menu choice from the

user. The overlay will have a foreground color of fg and a background color of bg. Title

is a pointer to a NULL-terminated string of characters which is used as the title for the

menu. If it is NULL, no title will be displayed. Itemptr is a pointer to an array of ITEM

structures, which also must be NULL terminated. Special care should be taken not to pass

a NULL itemptr or an itemptr array with zero active items, as these functions do not

protect against it. The MVMenu() and MVMenuXY() functions work exactly as the

Menu() and MenuXY() functions, and add mouse support for item selection. The calling

program must initialize mouse sampling with the _ss_mous() function before calling any

of the MV-series functions.

The ITEM structure is defined in <menu.h> as:

typedef struct {

char *itemname; /* name of the item */

char enabled; /* TRUE=enabled */

char (*itemfunc)(); /* function to call */

} ITEM;

When enabled equals 1, itemfunc is a pointer to a function to call when that item is

selected. If this pointer is NULL, then no function is called. When enabled equals 2,

itemfunc is a pointer to an array of ITEM structures. When the user selects this item, a

sub-menu will appear containing the items in the itemfunc array. Sub-menus may call

functions or reference other sub-menus. Submenus return 16 times the item number, plus

the main item that was elected. Do to 16 bit integers, sub-menus are limited to three

levels deep. For example, if the user selects the second sub-item under the third main

item, a value of 35 (16 * 2 + 3 = 35) would be returned. If the user should exit the sub-

menu without choosing an item, only the item numbers gathered before the sub-menu

will be returned. That is, the item number for that sub-menu will be 0 (so the previous

example would then only return 3- 16 * 0 + 3.)

All of these functions return the item number selected or 0 if no selection was made (user

pressed BREAK or moved mouse pointer off window.)

Example:

#include <menu.h>

ITEM mainmenu[]={{"Load a file",1,loadfunc},

 {"Save a file",1,savefunc},

 {"Quit",1,quitfunc},

 {NULL,NULL,NULL}};

main()

{

 int num;

 do

 num=Menu(1,"Main Menu",mainmenu,5,2)

 while (num==0);

}

_ss_mous, _gs_mous

Usage:

#include <mouse.h>

int _ss_mous(path,sample_rate,timeout,follow)

int path,sample_rate,timeout,follow;

int _ss_msig(path,signo)

int path,signo;

int _gs_mous(path,mspacket)

int path;

MSRET *mspacket;

Description:

_ss_mous() sets the mouse parameters for the window on path. Sample_rate is the

number of ticks to wait between samples. A sample_rate of 0 indicates that no sampling

should be done. Timeout is the number of ticks between button click timeouts. If

timeout is 0, then mouse signals are disabled. Otherwise, mouse signals are processed,

regardless of the sample_rate. Follow is a flag that enables/disables the auto-follow

mouse cursor. When follow is 1, any mouse movements also move the mouse pointer.

This value is ignored if sample_rate is 0.

_ss_msig() tells the window manager to send a signal signo to the current process when

the user clicks one of the mouse buttons. Unlike _ss_ssig(), this function does not

automatically send the signal if a button has already been clicked.

_gs_mous() will get an information packet containing the current state of the mouse. The

packet is defined in <mouse.h> as:

typedef struct mousin {

char pt_valid, /* is info valid? */

pt_actv, /* active side */

pt_totm, /* timeout initial value */

pt_rsrv0[2],/* reserved */

pt_tto, /* time till timeout */

pt_tsst[2],/* time since start counter */

pt_cbsa, /* current button state button A */

pt_cbsb, /* current button state button B */

pt_ccta, /* click count button A */

pt_cctb, /* click count button B */

pt_ttsa, /* time this state button A */

pt_ttsb, /* time this state button B */

pt_tlsa, /* time last state button A */

pt_tlsb, /* time last state button B */

pt_rsrv1[6],/* reserved */

pt_stat, /* window pointer location type */

pt_res; /* resolution */

int pt_acx, /* actual x value */

pt_acy, /* actual y value */

pt_wrx, /* window relative x value */

pt_wry; /* window relative y value */

} MSRET;

/* window regions for mouse */

#define WR_CNTNT 0 /* content region */

#define WR_CNTRL 1 /* control region */

#define WR_OFWIN 2 /* off window */

MouseKey

Usage:

int MouseKey(path)

int path;

Description:

MouseKey() checks the current mouse button and keyboard status and returns a value

based on its findings. If the left mouse button has been pressed, -1 is returned. If the right

mouse button has been pressed, -2 is returned. If a key has been pressed, the key code is

returned. MouseKey() waits until a key or mouse button has been pressed.

MouseXY

Usage:

int MouseXY(path,x,y)

int path;

int *x,*y;

Description:

MouseXY() is a function which will return the current mouse character position to x and

y. If the mouse pointer is currently off the window, or the window is not the current one,

then MouseXY() returns -1.

NOTE: this function only returns accurate coordinates on hardware text screens and

graphics screens using an 8 by 8 font.

movemem

Usage:

movemem(d,s,n)

char *d,*s;

int n;

Description:

Movemem is a memory moving function which handles overlapping source and

destination areas. N bytes are copied from s to d.

The algorithm that is used employs 2 byte moves when possible to increase its speed.

_ss_wset, _gs_msel, _ss_umba, _ss_sbar

Usage:

#include <wind.h>

int _ss_wset(path,wintype,windat)

int path,wintype

WNDSCR *windat;

int _gs_msel(path,itemno)

int path,*itemno;

int _ss_umba(path)

int path;

int _ss_sbar(path,horbar,verbar)

int path,horvar,verbar;

Description:

_ss_wset() will set the current window type to wintype. Wintype values are defined in

<wind.h> as:

/* window type defs */

#define WT_NBOX 0 /* No box- default window type */

#define WT_FWIN 1 /* Framed window with menus */

#define WT_FSWIN 2 /* Framed window with menus and scroll bars */

#define WT_SBOX 3 /* Shadowed window- form menus */

#define WT_DBOX 4 /* Double border- for dialog boxes */

#define WT_PBOX 5 /* Plain border- anything */

For framed windows, windat points to a menu structure. The menu structures are defined

in <wind.h> as:

#define MNENBL 1

#define MNDSBL 0

#define WINSYNC 0xc0c0

/* default menu id's */

#define MN_MOVE 1

#define MN_CLOS 2

#define MN_GROW 3

#define MN_USCRL 4

#define MN_DSCRL 5

#define MN_RSCRL 6

#define MN_LSCRL 7

#define MN_TNDY 20

#define MN_FILE 21

#define MN_EDIT 22

#define MN_STYL 23

#define MN_FONT 24

/* window - menu data structures */

typedef struct mistr { /* menu item descriptor */

char _mittl[15]; /* name of item */

char _mienbl; /* is item available? */

char _mires[5]; /* reserved */

} MIDSCR; /* item descriptor */

typedef struct mnstr {

char _mnttl[15]; /* name of menu */

char _mnid, /* menu id number */

_mnxsiz, /* width of menu */

_mnnits, /* number of items */

_mnenabl; /* is menu available? */

char _mnres[2]; /* reserved bytes */

struct mistr* _mnitems; /* pointer to items */

} MNDSCR; /* menu descriptor */

typedef struct wnstr { /* window descriptor */

char _wnttl[20]; /* title of window */

char _nmens; /* number of menus on window */

char _wxmin, /* min. window width */

_wymin; /* min. window height */

short _wnsync; /* synch bytes $C0C0 */

char _wnres[7]; /* reserved */

struct mnstr* _wnmen; /* pointer to menu descriptor's array */

} WNDSCR;

Consult the programmer's guide in the Multi-Vue manual for details on framed window

menus.

_gs_msel() will attempt to get a menu selection from the user. If the user makes a valid

selection, then the item number is placed in the variable pointed to by itemno and the

menu id is returned. Otherwise, 0 is returned.

_ss_umba() will update the window menus on path.

_ss_sbar() sets the scroll bar positions on windows using a framed window with scroll

bars. The vertical scroll bar is set to verbar and the horizontal scroll bar is set to horbar.

Bugs:

There are many bugs in WindInt that affect these functions. The easiest to overcome is

the _ss_wset() bug-WindInt forgets to erase the cursor before displaying the window

borders, resulting in a garbled display. This can be overcome by turning the cursor off

manually before calling _ss_wset(). Scroll bars also do not work properly on windows

that do not lie on the lefthand side of the window. These bugs should be corrected in the

next release of the operating system.

AddObj, MoveObj, DelObj

Usage:

#include <object.h>

OBJECT *Objects=NULL; /* global object list pointer */

OBJECT *AddObj(path,group,buffer,xcor,ycor,border)

int path,group,buffer,xcor,ycor,(*buffer)();

(void) MoveObj(path)

int path;

(void) DelObj(path,objptr)

int path;

OBJECT *objptr;

Description:

These functions provide simple sprite handling functions that use XOR logic. AddObj()

will add an object to the list and place the object at its initial position. If group or buffer

is equal to 0, then the Point() function is used in place of a PutBlk() call. AddObj() only

sets the xcor, ycor, group, buffer, and border fields in the OBJECT structure (see

below.) The deltax, deltay, xaccel, and yaccel are initialized to 0. The OBJECT

structure is declared in <object.h> as:

typedef struct OBJSTR {

char group; /* G/P group */

char buffer; /* G/P buffer */

int xcor; /* xcor * 32 */

int ycor; /* ycor * 32 */

int deltax; /* +/- xcor */

int deltay; /* +/- ycor */

int xaccel; /* xcor acceleration */

int yaccel; /* ycor acceleration */

int (*border)(); /* boundary function */

struct OBJSTR *next; /* next object */

struct OBJSTR *prev; /* previous object */

} OBJECT; /* call this type OBJECT */

Note that all coordinates and accelerations are fixed point numbers. That is, position 320

on the screen would be represented as 10240. This is done to provide smoother

movement with higher precision at the lowest cost. The lower 5 bits of each number are

the fractional portion of the number, giving an accuracy of 1/32. Higher accuracy could

be achieved by changing the library code to use floats or longs.

MovObj() is the function that performs the movement of each object that has been

added. First, the object is erased by re-putting the object at its present position

(remember, we are using XOR logic.) Then, the border function is called to move the

object. The border function is passed one argument-a pointer to the object that must be

moved. The border function you specify can change any of the objects fields except for

the next and prev fields. If the border field is NULL, then a bounce algorithm is used,

where objects will bounce off the sides of the screen. The border function must return a 0

on success, or a -1 if the object should be deleted. If the border function is successful, the

MoveObj() function puts the object at its new position.

The DelObj() function will delete the object pointed to by objptr. If path is equal to -1,

then the object will not be erased from the screen. This is most useful from within the

MoveObj() function, as the object will have already been erased. DelObj() also frees any

memory used to hold the object in memory that the AddObj() function has allocated.

Examples:

Look in the main archive CGFXLib.ar to find the example program Balls.c

Play

Usage:

Play(path,play_string {,variable args})

int path;

char *play_string;

Description:

Play() is a C function which imitates the PLAY function of Extended Color BASIC.

Play_string is a string of play 'commands' which can consist of:

A-G
The corresponding note is played in the current octave. The note letter can

optionally be followed by a sequence of symbols to modify the note:

 #,+ Indicates a sharp

 - Indicates a flat

 < Lowers the note an octave.

 > Raises the note an octave.

number
Sets the length of the note to 'number.' (periods can be added to indicate dotted

length.)

P{n}
This will add a rest (or pause) of the current note length. It can be followed

optionally by a numeric length.

L{n} This sets the current note length to the number following it.

V{n}
This sets the current volume to the number following it. The volume can be

between 0 and 63.

O{n}
This sets the current octave to the number following it. The octave can be

between 0 and 7.

MS This makes notes play staccato.

MN This makes notes play normally.

ML This makes notes play legato.

T{n} This sets the tempo to the number following it.

Additionally, the play string can contain substrings (indicated by %s) and integers

(indicated by %d) for variable arguments, much as can be done with printf().

PolyFill, PolyLine, PolyRot, PolyScal, PolyTran

Usage:

#include <polygon.h>

int PolyFill(path,polygon)

int path;

VERTEX *polygon;

int PolyLine(path,polygon)

int path;

VERTEX *polygon;

int PolyRot(polygon,cx,cy,angle)

VERTEX *polygon;

int cx,cy,angle;

int PolyScal(polygon,cx,cy,xmult,ymult,div)

VERTEX *polygon;

int cx,cy,xmult,ymult,div;

int PolyTran(polygon,xoff,yoff)

VERTEX *polygon;

int xoff,yoff;

Description:

These functions will draw closed polygons on path. Polygon is a pointer to an array of

vertices containing the endpoints of the polygon. The first and last elements of this array

must be equal; otherwise, these functions will search through all of memory until they

finally come back to the original pointer. There is no limit (other than memory) to the

number of sides the polygon may have. The VERTEX type is defined in <polygon.h>

as:

typedef struct { /* polygon endpoint structure */

int p_xcor,p_ycor; /* x and y coordinates */

} VERTEX;

PolyFill() will fill the polygon, while PolyLine() only draws the polygon's outline.

PolyRot() will rotate a polygon about (cx,cy) angle degrees.

PolyScal() will scale a polygon from (cx,cy). Xmult and ymult are the x and y axis

multipliers, respectively. The result from the multiplications is divided by div.

PolyTran() will translate (move) a polygon. Xoff and yoff are the x and y offsets to

move each vertex of the polygon.

SetType

Usage:

SetType(path,stype,fg,bg)

int path,stype,fg,bg;

Description:

SetType() is a short function which will check the current window type of path and

change it to type stype if necessary.

This function is dumb enough with text windows not to take advantage of the patch to

GRFDrv to allow 25 lines. On return, the foreground and background colors will be set

to fg and bg respectively. In the case where a new window is opened, the border is set to

the background color.

Shadow

Usage:

Shadow(path,width,length,fg,bg)

int path,width,length,fg,bg;

Description:

Shadow() will create an overlay centered on the current window, with a foreground color

of fg and a background color of bg. The overlay created will be width columns wide and

length rows long.

Note: due to the way overlay coordinates are computed, multiple overlays may not

appear centered on the window. This function calls _Flush() to flush any pending output

before creating the overlay (this does not automatically include buffering code, however!)

_gs_scsz, _gs_palt, _gs_styp, _gs_fbrg, _ss_gip, _ss_dfpl, _ss_mtyp

Usage:

_gs_scsz(path,horsiz,versiz)

int path,*horsiz,*versiz;

_gs_palt(path,palbuf)

int path;

char *palbuf;

_gs_styp(path,type)

int path,*type;

_gs_fbrg(path,fore,back,bord)

int path,*fore,*back,*bord;

_ss_gip(path,msres,msport,kbdstrt,kbdrpt)

int path,msres,msport,kbdstrt,kbdrpt;

_ss_dfpl(path,palbuf)

int path;

char *palbuf;

_ss_mtyp(path,montype)

int path,montype;

Description:

_gs_scsz() will get the width and length of path and place it in the variables pointed to by

horsiz and versiz. If the device in question does not support the SS.ScSiz call, then the

function returns -1 (the values of horsiz and versiz are undefined.)

_gs_palt() will get the current palette register settings for path and place them in a 16

character buffer pointed to by palbuf.

_gs_styp() will get the window type of path and place it in the integer pointed to by

type. -1 is returned if path is not a window device.

_gs_fbrg() will get the current foreground, background, and border colors for path and

place them into the integers pointed to by fore, back, and bord respectively.

_ss_gip() will set the global information parameters. Msres is the mouse resolution. If it

is 0, then a low resolution mouse is used. Otherwise, the high resolution mouse code is

used. msport is the mouse port to use. 1 is the left port, and 2 is the right port. kbdstrt is

the keyboard repeat start delay. If 0, keyboard repeat is turned off. Otherwise, the delay is

set to kbdstrt ticks (60ths of a second.) kbdrpt is the keyboard repeat speed. If 0,

keyboard repeat is turned off. Otherwise, the speed is set to one repeat every kbdrpt

ticks. This function should not generally be called from user programs as it affects

system-wide resources.

_ss_dfpl() sets the default palette settings for windows. Palbuf is a pointer to a 16

character palette buffer. This function should not generally be called from user programs

as it affects system-wide resources. If a program needs different palette settings for its

own window, then it should use the Palette() function.

_ss_mtyp() will set the current monitor type to montype, where 0 = composite monitor

or television, 1 = analog RGB monitor, and 2 = monochrome composite monitor. This

function should not generally be called from user programs as it affects system-wide

resources.

_ss_tone

Usage:

int _ss_tone(path,duration,volume,frequency)

int path,duration,volume,frequency;

Description:

The _ss_tone() function provides a C interface to the SS.Tone setstat call on the Color

Computer 3 running Level II OS-9. Path is any path to a window or VDG screen.

Duration is the duration of the tone, measured in 1/60ths of seconds. Volume is the

volume of the tone, where 0 is silence and 63 is maximum volume. Frequency is a

number from 0 to 4095 representing the actual frequency (not equal to Hz!)

Due to an error in the system code, specifying a volume of 0 will force an immediate

return, so rests (silence delays) must be done using sleep calls. _ss_tone() returns -1 on

error, where the error code is placed in the global variable errno.

TandyMN

Usage:

int TandyMN(path,inum,fg,bg)

int path,inum,fg,bg;

Description:

TandyMN() is a function which will run the appropriate program selected from the

default Tandy menu. Inum is the item number chosen from the Tandy menu. Fg and bg

are the foreground and background colors for the overlay window created for the

appropriate program. If path is less than 3, then the function creates an overlay on the

current window. Otherwise, the function assumes that path points to a new window.

Bell, BlinkOff, BlinkOn, Clear, CrRtn, CurDwn, CurLft, CurOff,
CurOn, CurRgt, CurUp, CurXY, DelLine, ErEOLine, ErEOScrn,
ErLine, InsLin, ReVOff, ReVOn, UndlnOff, UndlnOn

Usage:

int Bell(path)

int path;

int BlnkOff(path)

int path;

int BlnkOn(path)

int path;

int Clear(path)

int path;

int CrRtn(path)

int path;

int CurDwn(path)

int path;

int CurLft(path)

int path;

int CurOff(path)

int path;

int CurOn(path)

int path;

int CurRgt(path)

int path;

int CurUp(path)

int path;

int CurXY(path,x,y)

int path,x,y;

int DelLine(path)

int path;

int ErEOLine(path)

int path;

int ErEOScrn(path)

int path;

int ErLine(path)

int path;

int InsLin(path)

int path;

int ReVOff(path)

int path;

int ReVOn(path)

int path;

int UndlnOff(path)

int path;

int UndlnOn(path)

int path;

Description:

All of these functions perform an operation on the cursor or window on path. For

CurXY(), x and y are the column and row to position the cursor to. These coordinates are

zero-based (the origin is 0,0.) The remaining functions do the following:

Bell() sounds the bell.

BlnkOff() turns blinking off (hardware text windows only.)

BlnkOn() turns blinking on (hardware text windows only.)

Clear() clears the screen and homes the cursor.

CrRtn() moves the cursor to column zero.

CurDown() moves the cursor down 1 row.

CurLft() moves the cursor left 1 column.

CurOff() turns the cursor off.

CurOn() turns the cursor on.

CurRgt() moves the cursor right 1 column.

CurUp() moves the cursor up 1 row.

DelLine() deletes the current line and moves the lines below the current one upward.

The last line is blanked.

ErEOLine() erases from the current column to the end of the line.

ErEOScrn() erases from the current column to the end of the screen.

ErLine() erases the current line.

InsLin()
inserts a blank line at the current row. Lines below the current one are

moved downward.

ReVOff() turns reverse video off.

ReVOn() turns reverse video on.

UndlnOff() turns underlining off.

UndlnOn() turns underlining on.

On error these functions return -1 with the error number in errno.

CWArea, DWEnd, DWProtSw, DWSet, MVOEnd, OWEnd, OWSet,
Select, UnShadow

Usage:

int CWArea(path,cpx,cpy,szx,szy);

int path,cpx,cpy,szx,szy;

int DWEnd(path)

int path;

int DWProtSw(path,bsw)

int path,bsw;

int DWSet(path,sty,cpx,cpy,szx,szy,fprn,bprn,bdprn)

int path,sty,cpx,cpy,szx,szy,fprn,bprn,bdprn;

int DWSet(path,sty=0,cpx,cpy,szx,szy,fprn,bprn)

int path,sty,cpx,cpy,szx,szy,fprn,bprn;

int MVOWEnd(path)

int path;

int OWEnd(path)

int path;

int OWSet(path,svs,cpx,cpy,szx,szy,fprn,bprn)

int path,svs,cpx,cpy,szx,szy,fprn,bprn;

int Select(path)

int path;

int UnShadow(path)

int path;

Description:

DWSet() will create a new window on path of type sty. If sty is 0, then the window is

created on the process's current window. The valid values for sty are:

STY Window Size Colors Memory Type

current window

1 40x24(25*) 8&8 2000 bytes Text

2 80x24(25*) 8&8 4000 bytes Text

5 80x24 2 16000 bytes Graphics

6 40x24 4 16000 bytes Graphics

7 80x24 4 32000 bytes Graphics

8 40x24 16 32000 bytes Graphics

DWEnd() will remove a window on path.

DWProtSw() will allow new windows to be created over the window on path if bsw is

1. Otherwise, it will disallow any new windows to be created over the window.

OWSet() will create an overlay window over the window on path. If svs is 1, then the

area under the overlay is saved and the overlay area is cleared. Otherwise, the overlay

area is left untouched.

OWEnd() and UnShadow() will remove a previously created overlay. If the overlay was

created with the svs flag set to 1, then the area under the overlay is restored.

MVOWEnd() will reset the current Multi-Vue window type to the 'no box' and remove a

previously created overlay. If the overlay was created with the svs flag set to 1, then the

area under the overlay is restored.

CWArea() will change the current window/overlay working area to that specified in the

parameter list. The coordinates specified are relative to the window or overlay that is

active.

Select() will select the window on path to be displayed. If the calling process does not

own the keyboard (is not the current active process), then the call is ignored.

In all cases, path refers to the path to the window in question, cpx refers to the upper left-

hand corner column position, cpy refers to the upper left-hand corner row position, szx

refers to the character column width, szy refers to the character row height, fprn refers to

the foreground color, bprn refers to the background color, and bdprn refers to the border

color. These functions call _Flush() to flush any pending output before proceeding (this

does not automatically include buffering, however!) On error, -1 is returned. The error

code may be found in the errno variable.

Retrieved from

"http://sourceforge.net/apps/mediawiki/nitros9/index.php?title=CGFX_Libary"

